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Scale-free behavior of the Internet global performance
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Abstract. Measurements and data analysis have proved very effective in the study of the Internet’s phys-
ical fabric and have shown heterogeneities and statistical fluctuations extending over several orders of
magnitude. Here we focus on the relationship between the Round-Trip-Time (RTT) and the geographical
distance. We define dimensionless variables that contain information on the quality of Internet connec-
tions finding that their probability distributions are characterized by a slow power-law decay signalling
the presence of scale-free features. These results point out the extreme heterogeneity of Internet delay
since the transmission speed between different points of the network exhibits very large fluctuations. The
associated scaling exponents appear to have fairly stable values in different data sets and thus define an
invariant characteristic of the Internet that might be used in the future as a benchmark of the overall state
of “health” of the Internet.

PACS. 89.75.-k Complex systems – 05.70.Ln Nonequilibrium and irreversible thermodynamics – 87.23.Ge
Dynamics of social systems

The Internet is a distributed network whose size has al-
ready scaled five orders of magnitude since its inception.
Given the extremely complex and interwoven structure
of the Internet, several research groups started to deploy
technologies and infrastructures aiming to obtain a more
global picture of the Internet. This has led to very in-
teresting findings concerning the Internet maps topology.
Connectivity and other metrics are characterized by alge-
braic statistical distributions that signal fluctuations ex-
tending over many length scales [1–5]. These scale-free
properties and the associated heterogeneity of the Internet
fabric define a large scale object whose properties cannot
be inferred from local ones, and are in sharp contrast with
standard static graph models with Poissonian degree dis-
tributions. The importance of a correct topological char-
acterization of the Internet in routing protocols and the
parallel advancement in the understanding of scale-free
networks [6] have triggered a renewed interest in Inter-
net measurements and modeling. Considerable efforts have
been devoted also to the collection of end-to-end perfor-
mance data by means of active measurements techniques.
This activity has stimulated several studies that, however,
focus mainly on individual properties of hosts, routers or
routes [7,8,5]. Only recently, an increasing body of work
focuses on the performance of the Internet as a whole,
especially to forecast future performance trends [9,10].
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These measurements pointed out the presence of highly
heterogeneous performance and it is our interest to in-
spect the possibility of an associated scale-free behavior.

The basic testing package for Internet performance
is the original PING (Packet InterNet Groper) program.
Based on the Internet Control Message Protocol (ICMP),
Ping works much like a sonar echo-location, sending pack-
ets that elicit a reply from the targeted host. The pro-
gram then measures the round-trip-time (RTT), i.e. how
long it takes each packet to make the round trip. Or-
ganizations such as the National Laboratory for Ap-
plied Network Research (http://moat.nlanr.net/) and
the Cooperative Association for Internet Data Analy-
sis (http://www.caida.org/) use PING-like probes from
geographically diverse monitors to collect RTT data to
hundreds or thousands of Internet destinations. Our In-
ternetwork Performance Measurement (IPM) project cur-
rently participates in the PingER monitoring infrastruc-
ture (http://www-iepm.slac.stanford.edu/). PingER
was developed by the Internet End-to-end Performance
Measurement (IEPM) group to monitor the end-to-end
performance of Internet links. It consists of a number of
beacon sites sending regularly ICMP probes to hundreds
of targets and storing all data centrally. Most beacons and
targets are hosts belonging to universities or research cen-
ters; they are connected to many different networks and
backbones and have a very wide geographical distribution,
so they likely represent a statistically significant sample of
the Internet as a whole.
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We have analyzed two years worth of PingER data, go-
ing from April 2000 to March 2002. We have selected 3353
different beacon-target pairs, taken out of 36 beacons and
196 targets. For each pair we have considered the following
metrics: the geographic distance of the hosts d (measured
on a great circle), the monthly average packet loss rate r
(the percentage of ICMP packet that does not reach the
target point), the monthly minimum and average round-
trip-times RTTmin, and RTTav, respectively. These data
offer the opportunity to test various hypotheses on the sta-
tistical behavior of Internet delay. Each data point is the
monthly summary of approximately 1450 single measure-
ments. The geographic position of hosts is known with
great accuracy for some sites, but in most cases it may
be wrong by 10–20 km. Consequently, we have discarded
pairs of sites that are less than this distance apart.

The end-to-end delay is governed by several factors.
First, digital information travels along fiber optic cables
at almost exactly 2/3 the speed of light in vacuum. This
gives the mnemonically very convenient value of 1ms RTT
per 100 km of cable. Using this speed one can express the
geographic distance d in light-milliseconds, obtaining an
absolute physical lower bound on the RTT between sites.
The actual measured RTT is (usually) larger than this
value because of several factors. First, data packets of-
ten follow rather circuitous paths leading them through a
number of nodes that are far from the geodesic line be-
tween the endpoints. Furthermore, each link in a given
path is itself far from being straight, often following high-
ways, railways or power lines [13]. The combination of
these factors produces a purely geometrical enhancement
factor of the RTT. In addition, there is a minimum pro-
cessing delay δ introduced by each router or switch along
the way, of the order of 50–250 µs per hop on average,
summing up to a few ms for a typical path [13]. This can
be significant for very close site pairs, but is negligible for
most of the paths in the PingER sample. On top of this,
the presence of cross traffic along the route can cause data
packets to be queued in the routers/switches. Let tR be
the sum of all processing and queuing delays on a path.
When the traffic reaches congestion, tR becomes a very
significant part of the RTT and packet loss also sets in.

We have considered minimum and average values of
the RTT over one month periods. It is plausible that even
on rather congested links there will be a moment in the
course of a month when tR is negligible, so RTTmin can
be taken as an estimate of the best possible communi-
cation performance on the given data path, subject only
to the intrinsic geometrical enhancement factor and the
minimum processing delay. For instance, for a US-Europe
path, the night between Saturday and Sunday (US time,
corresponding to Sunday morning in Europe) is a time
when the links and nodes along the path can generally be
expected to carry little traffic. On the other hand, RTTav

for a given site pair is obtained by considering the aver-
age RTT over one month periods. This takes into account
also the average queuing delay and gives an estimate of
the overall communication performance on the given data
path.

Fig. 1. RTTmin between 2114 host pairs (PingER data set of
February 2002) as a function of their distance d. Each point
correspond to a different host pair. The line indicates the phys-
ical lower bound provided by the speed of light in transmission
cables. It is possible to observe the very large fluctuations in
the RTTmin of different host pairs separated by the same dis-
tance. For graphical reasons the picture frame is limited to
400 ms, however, several outliers up to 900 ms are present in
the data set.

We studied the level of correlation between geo-
graphic distance and the RTTmin and RTTav of source-
destination pair. In Figure 1 we report the obtained
relationship for RTTmin compared with the solid line rep-
resenting the speed of light in optic fibers at each distance.
While it is possible to observe a linear correlation of the
RTTmin with the physical distance of hosts, yet the data
are extremely scattered. The RTTav present a qualita-
tively very similar behavior, and it is worth remarking
that both plots are in good agreement with similar analy-
ses obtained from different data sets [10–12]. While several
qualitative features of this plot provide insight into the ge-
ographical distribution of hosts and their connectivity, it
misses a quantitative characterization of the intrinsic fluc-
tuations of transmission delays and their statistical prop-
erties.

A more significant characterization of the end-to-end
performance is obtained by normalizing the latency time
by the geographical distance between hosts. This de-
fines the absolute delay metrics τmin =RTTmin/d and
τav =RTTav/d which represent the minimum and aver-
age delay time for unit distance, i.e. the inverse of the
overall communication velocity (note that if we measure
d in light-milliseconds τmin and τav are actually dimen-
sionless). These metrics allow us to meaningfully compare
the delay between pairs of hosts with different geograph-
ical distances. The highly scattered plot of Figure 1, in-
dicates that end-to-end delay fluctuates conspicuously in
the whole range of geographic distances. In particular,
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looking at collections of host pairs at approximately the
same geographical distance, we find delay times varying
up to two orders of magnitude. The best way to char-
acterize the level of fluctuations in delay times is repre-
sented by the probability P (τmin) and P (τav) that a pair
of hosts present a given τmin and τav, respectively. In con-
trast with usual exponential or Gaussian distributions, for
which there is a well defined scale, we find that data closely
follow a straight line in a double logarithmic plot for at
least one or two orders of magnitude, defining a power-
law behavior P (τmin) ∼ τ−αmin

min and P (τav) ∼ τ−αav
av . In

Figure 2 we show the cumulative distributions Pcum(τ) =∫ ∞
τ P (τ ′)dτ ′ obtained from the PingER data. If the prob-

ability density distribution is a power law P (τ) ∼ τ−α, the
cumulate distribution preserves the algebraic behavior and
scales as Pcum(τ) = τ−(α−1). In addition, it has the ad-
vantage of being considerably less noisy than the original
distribution. From the behavior of Figure 2, a best fit of
the linear region in the double logarithmic representation
yields the scaling exponents αmin � 3.0 and αav � 2.5.
It is worth remarking that the presence of a truncation
of the power law behavior for large values is a natural ef-
fect implicitly present in every real world data set. This
is especially true in the present case where packet loss oc-
curs after a maximum timeout. Power-law distributions
are characterized by scale-free properties, i.e. unbounded
fluctuations and the absence of a meaningful characteristic
length usually associated with the probability distribution
peak. In such a case, the mean distribution value and the
corresponding averages are poorly significant, since fluc-
tuations are gigantic and there are non negligible proba-
bilities to have very large τmin and τav compared to the
average values in the whole system. In other words, In-
ternet performances are extremely heterogeneous and it
is impossible to infer local properties from average quan-
tities.

Critical and scale-free behavior has been observed and
characterized in queuing properties at router interfaces,
probably affecting conspicuously the distribution of τav.
It is, however, unclear why scale-free properties are ob-
served also in the distribution of τmin. In this case traffic
effects should be negligible, and it is well known that the
the distribution of hop counts between hosts has a well de-
fined peak and no fat tails [12]. On the contrary, we find
that minimum delays are distributed over more than two
orders of magnitude. Potentially, cables wiggliness, Inter-
net connectivity and hardware heterogeneities might be
playing a role in the observed performance distribution.

A tendency to improved performance is observed over
the two years period of data collections. Table 1 shows
that the averages over all the site pairs of 〈τmin〉 and 〈τav〉
decrease steadily, whereas the exponents αmin and αav

increase signalling a faster decay of the distribution tails.
We can consider the improvement of the absolute delay as
the byproduct of the technological drift to better lines and
routers. On the other hand, the large fluctuations present
in the Internet appear to be a stable and general feature
of the statistical analysis. In order to have an independent
check of the PingER results, we have considered also the

Fig. 2. Cumulative distributions, of the round-trip-times nor-
malized with the actual distance d between host pairs.The lin-
ear behavior in the double logarithmic scale indicates a broad
distribution with power-law behavior. (a) In the case of the
normalized minimum round-trip-times τmin, the slope of the
reference line is −2.0. (b) In the case of the normalized average
round-trip-times τav, the reference line has a slope −1.5. The
insets of a) and b) report the distributions obtained for the
Gloperf dataset. In both cases we obtain power-law behaviors
in good agreement with those obtained for the PingER data
sets (see Tab. 1).

Gloperf data set collected in the second semester of 1999
that was used in [10]. We have extracted a set of parameter
values for each of 650 unique site pairs in the sample and
analyzed the statistics. These results are also reported in
Table 1. Although the averages depend on the specific
characteristics of the sample (size, world region etc.) and
differ significantly from the PingER case, the existence
of power law tails and the values of the exponents seem
to be confirmed. These exponents can thus be considered
as one of the few and sought after reliable and invariant
properties of the Internet [14].

Finally, further evidence of large fluctuations in Inter-
net performance is provided by the analysis of the packet
loss data. Also in this case we are interested in the prob-
ability P (r) that a certain rate r of packet loss occur on
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Table 1. The table shows the improving performance over the
years of the PingER data sample. As an independent check,
we report the values obtained from the analysis of the data
sample of the Gloperf project (second semester 1999).

Data set αmin αav 〈τmin〉 〈τav〉
April ’00 2.7 ± 0.2 2.2 ± 0.2 3.7 6.6
Feb. ’01 2.9 ± 0.2 2.4 ± 0.2 3.6 6.6
Feb. ’02 3.0 ± 0.2 2.5 ± 0.2 3.1 5.3
Gloperf 2.7 ± 0.2 2.4 ± 0.2 5.4 7.8

Fig. 3. Probability density P (r) for the occurrence of packet
loss rate r on beacon-target pairs transmissions. The zero on
the x axis corresponds to a 1% rate in packet loss. Note that
the distribution has a linear behavior in the double logarithmic
scale, indicating a power law behavior. The reference line has
a slope −1.2.

any given pair. We have analyzed the monthly average
packet loss rate between PingER beacon-target pairs. In
Figure 3 we report the probability P (r) as a function of
r. The plot shows an algebraically decaying distribution
that can be well approximated by a power-law behavior
P (r) ∼ r−γ with γ = 1.2±0.2. The slowly decaying prob-
ability of large packet loss rate is another signature of the
very heterogeneous performance of the Internet.

The results presented here have implications for the
evaluation of performance trends. Models for primary
performance factors must include the high heterogeneities
observed in real data. Time and scale extrapolation for In-
ternet performances can be seriously flawed by considering
just the average properties. It is likely that we will observe
in the future an improvement of the average end-to-end
delay due to increased bandwidth and router speed, but
the real improvement of the Internet as a whole would
correspond in reducing the huge statistical fluctuations

observed nowadays. On a more theoretical side, the ex-
planation and formulation of microscopic models at the
origin of the scale-free behavior of Internet performance
appear challenging, to say the least.
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